Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.385
Filtrar
1.
Cells ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607050

RESUMO

Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy worldwide. Despite the latest advances, a major clinical issue in EOC is the disappointing prognosis related to chemoresistance in almost one-third of cases. Drug resistance relies on heterogeneous cancer stem cells (CSCs), endowed with tumor-initiating potential, leading to relapse. No biomarkers of chemoresistance have been validated yet. Recently, major signaling pathways, micro ribonucleic acids (miRNAs), and circulating tumor cells (CTCs) have been advocated as putative biomarkers and potential therapeutic targets for drug resistance. However, further investigation is mandatory before their routine implementation. In accordance with the increasing rate of therapeutic efforts in EOC, the need for biomarker-driven personalized therapies is growing. This review aims to discuss the emerging hallmarks of drug resistance with an in-depth insight into the underlying molecular mechanisms lacking so far. Finally, a glimpse of novel therapeutic avenues and future challenges will be provided.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Transdução de Sinais , Biomarcadores
2.
Clin Transl Med ; 14(4): e1604, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38566518

RESUMO

BACKGROUND: IL-17A and TNF synergistically promote inflammation and tumorigenesis. Their interplay and impact on ovarian carcinoma (OC) progression are, however, poorly understood. We addressed this question focusing on mesothelial cells, whose interaction with tumor cells is known to play a pivotal role in transcoelomic metastasis formation. METHODS: Flow-cytometry and immunohistochemistry experiments were employed to identify cellular sources of IL-17A and TNF. Changes in transcriptomes and secretomes were determined by bulk and single cell RNA sequencing as well as affinity proteomics. Functional consequences were investigated by microscopic analyses and tumor cell adhesion assays. Potential clinical implications were assessed by immunohistochemistry and survival analyses. RESULTS: We identified Th17 cells as the main population of IL-17A- and TNF producers in ascites and detected their accumulation in early omental metastases. Both IL-17A and its receptor subunit IL-17RC were associated with short survival of OC patients, pointing to a role in clinical progression. IL-17A and TNF synergistically induced the reprogramming of mesothelial cells towards a pro-inflammatory mesenchymal phenotype, concomitantly with a loss of tight junctions and an impairment of mesothelial monolayer integrity, thereby promoting cancer cell adhesion. IL-17A and TNF synergistically induced the Th17-promoting cytokines IL-6 and IL-1ß as well as the Th17-attracting chemokine CCL20 in mesothelial cells, indicating a reciprocal crosstalk that potentiates the tumor-promoting role of Th17 cells in OC. CONCLUSIONS: Our findings reveal a novel function for Th17 cells in the OC microenvironment, which entails the IL-17A/TNF-mediated induction of mesothelial-mesenchymal transition, disruption of mesothelial layer integrity and consequently promotion of OC cell adhesion. These effects are potentiated by a positive feedback loop between mesothelial and Th17 cells. Together with the observed clinical associations and accumulation of Th17 cells in omental micrometastases, our observations point to a potential role in early metastases formation and thus to new therapeutic options.


Assuntos
Neoplasias Ovarianas , Células Th17 , Humanos , Feminino , Interleucina-17/metabolismo , Citocinas/metabolismo , Neoplasias Ovarianas/metabolismo , Inflamação/metabolismo , Microambiente Tumoral
3.
Int J Mol Med ; 53(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426604

RESUMO

The effects of adipocyte­rich microenvironment (ARM) on chemoresistance have garnered increasing interest. Ovarian cancer (OVCA) is a representative adipocyte­rich associated cancer. In the present study, epithelial OVCA (EOC) was used to investigate the influence of ARM on chemoresistance with the aim of identifying novel targets and developing novel strategies to reduce chemoresistance. Bioinformatics analysis was used to explore the effects of ARM­associated mechanisms contributing to chemoresistance and treated EOC cells, primarily OVCAR3 cells, with human adipose tissue extracts (HATES) from the peritumoral adipose tissue of patients were used to mimic ARM in vitro. Specifically, the peroxisome proliferator­activated receptor Î³ (PPARγ) antagonist GW9662 and the ABC transporter G family member 2 (ABCG2) inhibitor KO143, were used to determine the underlying mechanisms. Next, the effect of HATES on the expression of PPARγ and ABCG2 in OVCAR3 cells treated with cisplatin (DDP) and paclitaxel (PTX) was determined. Additionally, the association between PPARγ, ABCG2 and chemoresistance in EOC specimens was assessed. To evaluate the effect of inhibiting PPARγ, using DDP, a nude mouse model injected with OVCAR3­shPPARγ cells and a C57BL/6 model injected with ID8 cells treated with GW9662 were established. Finally, the factors within ARM that contributed to the mechanism were determined. It was found that HATES promoted chemoresistance by increasing ABCG2 expression via PPARγ. Expression of PPARγ/ABCG2 was related to chemoresistance in EOC clinical specimens. GW9662 or knockdown of PPARγ improved the efficacy of chemotherapy in mice. Finally, angiogenin and oleic acid played key roles in HATES in the upregulation of PPARγ. The present study showed that the introduction of ARM­educated PPARγ attenuated chemoresistance in EOC, highlighting a potentially novel therapeutic adjuvant to chemotherapy and shedding light on a means of improving the efficacy of chemotherapy from the perspective of ARM.


Assuntos
Anilidas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Apoptose , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Microambiente Tumoral , Regulação para Cima
4.
Neoplasia ; 51: 100987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489912

RESUMO

Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Sistema de Sinalização das MAP Quinases , Platina , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo
5.
Sci Rep ; 14(1): 7539, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553472

RESUMO

High grade serous carcinoma (HGSC) metastasises primarily intraperitoneally via cancer spheroids. Podocalyxin (PODXL), an anti-adhesive transmembrane protein, has been reported to promote cancer survival against chemotherapy, however its role in HGSC chemoresistance is unclear. This study investigated whether PODXL plays a role in promoting chemoresistance of HGSC spheroids. We first showed that PODXL was expressed variably in HGSC patient tissues (n = 17) as well as in ovarian cancer cell lines (n = 28) that are more likely categorised as HGSC. We next demonstrated that PODXL-knockout (KO) cells proliferated more slowly, formed less compact spheroids and were more fragile than control cells. Furthermore, when treated with carboplatin and examined for post-treatment recovery, PODXL-KO spheroids showed significantly poorer cell viability, lower number of live cells, and less Ki-67 staining than controls. A similar trend was also observed in ascites-derived primary HGSC cells (n = 6)-spheroids expressing lower PODXL formed looser spheroids, were more vulnerable to fragmentation and more sensitive to carboplatin than spheroids with higher PODXL. Our studies thus suggests that PODXL plays an important role in promoting the formation of compact/hardy HGSC spheroids which are more resilient to chemotherapy drugs; these characteristics may contribute to the chemoresistant nature of HGSC.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
6.
Cell Commun Signal ; 22(1): 194, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539211

RESUMO

BACKGROUND: Chemoresistance is associated with tumor relapse and unfavorable prognosis. Multiple mechanisms underlying chemoresistance have been elucidated, including stemness and DNA damage repair. Here, the involvement of the WNT receptor, FZD5, in ovarian cancer (OC) chemoresistance was investigated. METHODS: OC cells were analyzed using in vitro techniques including cell transfection, western blot, immunofluorescence and phalloidin staining, CCK8 assay, colony formation, flowcytometry, real-time PCR, and tumorisphere formation. Pearson correlation analysis of the expression levels of relevant genes was conducted using data from the CCLE database. Further, the behavior of OC cells in vivo was assessed by generation of a mouse xenograft model. RESULTS: Functional studies in OC cells showed that FZD5 contributes to epithelial phenotype maintenance, growth, stemness, HR repair, and chemoresistance. Mechanistically, FZD5 modulates the expression of ALDH1A1, a functional marker for cancer stem-like cells, in a ß-catenin-dependent manner. ALDH1A1 activates Akt signaling, further upregulating RAD51 and BRCA1, to promote HR repair. CONCLUSIONS: Taken together, these findings demonstrate that the FZD5-ALDH1A1-Akt pathway is responsible for OC cell survival, and targeting this pathway can sensitize OC cells to DNA damage-based therapy.


Assuntos
Aldeído Desidrogenase , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Aldeído Desidrogenase/genética , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
7.
BMC Cancer ; 24(1): 395, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549061

RESUMO

BACKGROUND: Although immune cell therapy has long been used for treating solid cancer, its efficacy remains limited. Interferon (IFN)-producing killer dendritic cells (IKDCs) exhibit cytotoxicity and present antigens to relevant cells; thus, they can selectively induce tumor-associated antigen (TAA)-specific CD8 T cells and may be useful in cancer treatment. Various protocols have been used to amplify human IKDCs from peripheral sources, but the complexity of the process has prevented their widespread clinical application. Additionally, the induction of TAA-specific CD8 T cells through the adoptive transfer of IKDCs to immunocompromised patients with cancer may be insufficient. Therefore, we developed a method for generating an immune cell-based regimen, Phyduxon-T, comprising a human IKDC counterpart (Phyduxon) and expanded TAA-specific CD8 T cells. METHODS: Peripheral blood mononuclear cells from ovarian cancer patients were cultured with human interleukin (hIL)-15, hIL-12, and hIL-18 to generate Phyduxon-T. Then, its phenotype, cytotoxicity, and antigen-presenting function were evaluated through flow cytometry using specific monoclonal antibodies. RESULTS: Phyduxon exhibited the characteristics of both natural killer and dendritic cells. This regimen also exhibited cytotoxicity against primary ovarian cancer cells and presented TAAs, thereby inducing TAA-specific CD8 T cells, as evidenced by the expression of 4-1BB and IFN-γ. Notably, the Phyduxon-T manufacturing protocol effectively expanded IFN-γ-producing 4-1BB+ TAA-specific CD8 T cells from peripheral sources; these cells exhibited cytotoxic activities against ovarian cancer cells. CONCLUSIONS: Phyduxon-T, which is a combination of natural killer cells, dendritic cells, and TAA-specific CD8 T cells, may enhance the efficacy of cancer immunotherapy.


Assuntos
Neoplasias Ovarianas , Linfócitos T Citotóxicos , Feminino , Humanos , Interferons/metabolismo , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Células Matadoras Naturais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígenos de Neoplasias , Neoplasias Ovarianas/metabolismo , Células Dendríticas
8.
Mol Cancer ; 23(1): 66, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539161

RESUMO

Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Metilação de DNA , Epigênese Genética , Resistencia a Medicamentos Antineoplásicos/genética
9.
Int J Biol Sci ; 20(5): 1578-1601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481806

RESUMO

Background: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR-NK cell efficacy. Claudin-6 (CLDN6) has been reported to be overexpressed in ovarian cancer and may be an attractive target for CAR-NK cells immunotherapy. However, the feasibility of using anti-CLDN6 CAR-NK cells to treat ovarian cancer remains to be explored. Methods: CLDN6 expression in primary human ovarian cancer, normal tissues and cell lines were detected by immunohistochemistry and western blot. Two types of third-generation CAR NK-92MI cells targeting CLDN6, CLDN6-CAR1 NK-92MI cells with domains containing self-activated elements (NKG2D, 2B4) and CLDN6-CAR2 NK-92MI cells with classical domains (CD28, 4-1BB) were constructed by lentivirus transfection, sorted by flow cytometry and verified by western blot and qPCR. OVCAR-3, SK-OV-3, A2780, Hey and PC-3 cells expressing the GFP and luciferase genes were transduced. Subcutaneous and intraperitoneal tumor models were established via NSG mice. The ability of CLDN6-CAR NK cells to kill CLDN6-positive ovarian cancer cells were evaluated in vitro and in vivo by live cell imaging and bioluminescence imaging. Results: Both CLDN6-CAR1 and CLDN6-CAR2 NK-92MI cells could specifically killed CLDN6-positive ovarian cancer cells (OVCAR-3, SK-OV-3, A2780 and Hey), rather than CLDN6 negative cell (PC-3), in vitro. CLDN6-CAR1 NK-92MI cells with domains containing self-activated elements (NKG2D, 2B4) exhibited stronger cytotoxicity than CLDN6-CAR2 NK-92MI cells with classical domains (CD28, 4-1BB). Furthermore, CLDN6-CAR1 NK cells could effectively eliminate ovarian cancer cells in subcutaneous and intraperitoneal tumor models. More importantly, CAR-NK cells combined with immune checkpoint inhibitors, anti-PD-L1, could synergistically enhance the antitumor efficacy of CLDN6-targeted CAR-NK cells. Conclusions: These results indicate that CLDN6-CAR NK cells possess strong antitumor activity and represent a promising immunotherapeutic modality for ovarian cancer.


Assuntos
Claudinas , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Feminino , Receptores de Antígenos Quiméricos/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Apoptose , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos CD28/metabolismo , Células Matadoras Naturais , Imunoterapia/métodos , Imunoterapia Adotiva/métodos
10.
Sci Rep ; 14(1): 6373, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493257

RESUMO

Cancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh. Drug potency was assessed via cell viability assays across several pancreatic and ovarian cancer cell lines in comparison with the individual components (S2 and IAPinh) as well as their equimolar mixtures (S2 + IAPinh) both in vitro and in preclinical models of pancreatic and ovarian cancer. Mechanistic studies of S2/IAPinh-mediated cell death were investigated in vitro and in vivo using syngeneic and xenograft mouse models of murine pancreatic and human ovarian cancer, respectively. S2/IAPinh demonstrated markedly improved pharmacological activity in cancer cell lines and primary organoid cultures when compared to the controls. In vivo testing demonstrated a marked reduction in tumor growth rates and increased survival rates when compared to the respective control groups. The predicted mechanism of action of S2/IAPinh was confirmed through assessment of apoptosis pathways and demonstrated strong target degradation (cellular inhibitor of apoptosis proteins-1 [cIAP-1]) and activation of caspases 3 and 8. Taken together, S2/IAPinh demonstrated efficacy in models of pancreatic and ovarian cancer, two challenging malignancies in need of novel treatment concepts. Our data support an in-depth investigation into utilizing S2/IAPinh for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral
11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474294

RESUMO

Platinum compounds are very active in first-line treatments of ovarian carcinoma. In fact, high rates of complete remission are achieved, but most patients eventually relapse with resistant disease. Many mechanisms underlying the platinum-resistant phenotype have been reported. However, there are no data in the same isogenic cell system proficient and deficient in homologous recombination (HR) on platinum-acquired resistance that might unequivocally clarify the most important mechanism associated with resistance. We generated and characterized cisplatin (DDP)-resistant murine ovarian ID8 cell lines in a HR-deficient and -proficient background. Specific upregulation of the NER pathway in the HR-proficient and -resistant cells and partial restoration of HR in Brca1-/--resistant cells were found. Combinations of different inhibitors of the DNA damage response pathways with cisplatin were strongly active in both resistant and parental cells. The data from the ID8 isogenic system are in line with current experimental and clinical evidence and strongly suggest that platinum resistance develops in different ways depending on the cell DNA repair status (i.e., HR-proficient or HR-deficient), and the upregulation and/or restoration of repair pathways are major determinants of DDP resistance.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Platina , Recidiva Local de Neoplasia , Neoplasias Ovarianas/metabolismo , Recombinação Homóloga , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
12.
Sci Rep ; 14(1): 6504, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499622

RESUMO

This study aimed to investigate the role of autophagy, ferroptosis, and pyroptosis in the antitumour mechanism of harmine (Har) and its crosstalk in ovarian cancer. By transmission electron microscopy, we found that compared with those in the control group, the cytoplasm of human ovarian cancer cells (SKOV3) treated with Har showed increased numbers of autophagic vesicles, decreased intracellular mitochondrial volume, increased bilayer membrane density, and decreased cristae. Western blot, immunofluorescence, and monodasylcadaverine (MDC) staining all suggested that Har promoted autophagy in SKOV3 cells. LY294002 and siFOXO3 rescued the inhibition of the PI3K/AKT/mTOR/FOXO3 signalling pathway and the promotion of autophagy by Har. Additionally, the levels of ferroptosis- and pyroptosis-related proteins and the levels of Fe2+ , glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) suggested that Har promoted ferroptosis and pyroptosis in SKOV3 cells. Interestingly, pretreatment with chloroquine (CQ), erastin, rapamycin (Rap), or ferrostatin-1 (Fer-1) increased or reversed the ferroptosis and pyroptosis promoted by Har, respectively. In vivo, the volume of tumours in the Har group was decreased, and immunohistochemistry revealed decreased levels of Ki-67 and GPX4 and increased levels of ATG5 and NARL3. In conclusion, Har exerts its anti-ovarian cancer effect not only by promoting autophagy by regulating the PI3K/AKT/mTOR/FOXO3 signalling pathway but also by promoting ferroptosis and pyroptosis. Additionally, there is complex crosstalk between autophagy, ferroptosis, and pyroptosis in ovarian cancer.


Assuntos
Ferroptose , Neoplasias Ovarianas , Feminino , Humanos , Piroptose , Harmina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Autofagia
13.
J Immunother Cancer ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490714

RESUMO

BACKGROUND: In a prior report, we detailed the isolation and engineering of a bispecific killer cell engager, referred to as BiKE:E5C1. The BiKE:E5C1 exhibits high affinity/specificity for the CD16a activating receptor on natural killer (NK) cells and human epidermal growth factor receptor 2 (HER2) on cancer cells. In vitro studies have demonstrated that BiKE:E5C1 can activate the NK cells and induce the killing of HER2+ ovarian and breast cancer cells, surpassing the performance of the best-in-class monoclonal antibody, Trazimera (trastuzumab). To advance this BiKE technology toward clinical application, the objective of this research was to demonstrate the ability of BiKE:E5C1 to activate CD16+ immune cells such as NK cells and macrophages to kill cancer cells, and eradicate metastatic HER2+ tumors in NK humanized NOG mice. METHODS: We assessed BiKE:E5C1's potential to activate CD16-expressing peripheral blood (PB)-NK cells, laNK92 cells, and THP-1-CD16A monocyte-macrophages through flowcytometry and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC) assays. Subsequently, laNK92 cells were selected as effector cells and genetically modified to express the nanoluciferase gene, enabling the monitoring of their viability in NK humanized NOG mice using quantitative bioluminescent imaging (qBLI). To evaluate the functionality of BiKE:E5C1 in vivo, we introduced firefly luciferase-expressing ovarian cancer cells via intraperitoneal injection into hIL-15 and hIL-2 NOG mice, creating a model of ovarian cancer metastasis. Once tumor establishment was confirmed, we treated the mice with laNK92 cells plus BiKE:E5C1 and the response to therapy was assessed using qBLI. RESULTS: Our data demonstrate that BiKE:E5C1 activates not only laNK92 cells but also PB-NK cells and macrophages, significantly enhancing their anticancer activities. ADCC assay demonstrated that IgG1 Fc region had no impact on BiKE:E5C1's anticancer activity. In vivo results reveal that both hIL-15 and hIL-2 NOG mouse models support the viability and proliferation of laNK92 cells. Furthermore, it was observed that BiKE:E5C1 activates laNK92 cells in mice, leading to eradication of cancer metastasis in both NK humanized hIL-15 and hIL-2 NOG mouse models. CONCLUSIONS: Collectively, our in vivo findings underscore BiKE:E5C1's potential as an immune cell engager capable of activating immune cells for cancer cell elimination, thereby expanding the arsenal of available BiKEs for cancer immunotherapy.


Assuntos
Células Matadoras Naturais , Neoplasias Ovarianas , Feminino , Camundongos , Humanos , Animais , Citotoxicidade Celular Dependente de Anticorpos , Trastuzumab , Macrófagos , Neoplasias Ovarianas/metabolismo
14.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538058

RESUMO

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Assuntos
Diosgenina , Neoplasias Ovarianas , PTEN Fosfo-Hidrolase , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Diosgenina/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Regulação para Cima
15.
Comput Biol Med ; 172: 108208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484696

RESUMO

Ovarian cancer, a major gynecological malignancy, often remains undetected until advanced stages, necessitating more effective early screening methods. Existing biomarker based on differential genes often suffers from variations in clinical practice. To overcome the limitations of absolute gene expression values including batch effects and biological heterogeneity, we introduced a pairwise biosignature leveraging intra-sample differentially ranked genes (DRGs) and machine learning for ovarian cancer detection across diverse cohorts. We analyzed ten cohorts comprising 872 samples with 796 ovarian cancer and 76 normal. Our method, DRGpair, involves three stages: intra-sample ranking differential analysis, reversed gene pair analysis, and iterative LASSO regression. We identified four DRG pairs, demonstrating superior diagnostic performance compared to current state-of-the-art biomarkers and differentially expressed genes in seven independent cohorts. This rank-based approach not only reduced computational complexity but also enhanced the specificity and effectiveness of biomarkers, revealing DRGs as promising candidates for ovarian cancer detection and offering a scalable model adaptable to varying cohort characteristics.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Humanos , Feminino , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
16.
Genes Genomics ; 46(4): 511-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457096

RESUMO

BACKGROUND: Human endogenous retrovirus (HERV)-K is a type of retrovirus that is present in the human genome, and its expression is usually silenced in healthy tissues. The precise mechanism by which HERV-K env influences cancer stemness is not fully understood, but it has been suggested that HERV-K env may activate various signaling pathways that promote stemness traits in cancer cells. OBJECTIVE: To establish the connection between HERV-K env expression and cancer stemness in ovarian cancer cells, we carried out correlation analyses between HERV-K env and the cancer stem cell (CSC) marker known as the cluster of differentiation 133 (CD133) gene in SKOV3 ovarian cancer cells. METHOD: To perform correlation analysis between HERV-K env and CSCs, ovarian cancer cells were cultured in a medium designed for cancer stem cell induction. The expression of HERV-K env and CD133 genes was verified using quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analyses. Additionally, the expression of stemness-related markers, such as OCT-4 and Nanog, was also confirmed using RT-qPCR. RESULTS: In the stem cell induction medium, the number of tumorsphere-type SKOV3 cells increased, and the expression of CD133 and HERV-K env genes was up-regulated. Additionally, other stemness-related markers like OCT-4 and Nanog also exhibited increased expression when cultured in the cancer stem cell induction medium. However, when HERV-K env knockout (KO) SKOV3 cells were cultured in the same cancer stem cell induction medium, there was a significant decrease in the number of tumorsphere-type cells compared to mock SKOV3 cells subjected to the same conditions. Furthermore, the expression of CD133, Nanog, and OCT-4 did not show a significant increase in HERV-K env KO SKOV3 cells compared to mock SKOV3 cells cultured in the same cancer stem cell induction medium. CONCLUSION: These findings indicate that the expression of HERV-K env increased in SKOV3 cells when cultured in cancer stem cell induction media, and cancer stem cell induction was inhibited by KO of HERV-K env in SKOV3 cells. These results suggest a strong association between HERV-K env and stemness in SKOV3 ovarian cancer cells.


Assuntos
Retrovirus Endógenos , Neoplasias Ovarianas , Humanos , Feminino , Retrovirus Endógenos/genética , Genes env , Neoplasias Ovarianas/metabolismo , Células-Tronco Neoplásicas/metabolismo
17.
Chem Biol Interact ; 393: 110958, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38493911

RESUMO

Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, such as Olaparib, have been pivotal in treating BRCA-deficient ovarian cancer. However, their efficacy is limited in over 40% of BRCA-deficient patients, with acquired resistance posing new clinical challenges. To address this, we employed bioinformatics methods to identify key genes impacting Olaparib sensitivity in ovarian cancer. Through comprehensive analysis of public databases including GEO, CPTAC, Kaplan Meier Plotter, and CCLE, we identified CRABP2 as significantly upregulated at both mRNA and protein levels in ovarian cancer, correlating with poor prognosis and decreased Olaparib sensitivity. Using colony formation and CCK-8 assays, we confirmed that CRABP2 knockdown in OVCAR3 and TOV112D cells enhanced sensitivity to Olaparib. Additionally, 4D label-free quantitative proteomics analysis, GSEA, and GO/KEGG analysis revealed CRABP2's involvement in regulating oxidation signals. Flow cytometry, colony formation assays, and western blotting demonstrated that CRABP2 knockdown promoted ROS production by activating Caspase-8, thereby augmenting Olaparib sensitivity and inhibiting ovarian cancer cell proliferation. Moreover, in xenograft models, CRABP2 knockdown significantly suppressed tumorigenesis and enhanced Olaparib sensitivity, with the effect being reversed upon Caspase-8 knockdown. These findings suggest that CRABP2 may modulate Olaparib sensitivity in ovarian cancer through the Caspase-8/ROS axis, highlighting its potential as a target for Olaparib sensitization.


Assuntos
Neoplasias Ovarianas , Ftalazinas , Piperazinas , Feminino , Humanos , Apoptose , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Biochem Cell Biol ; 169: 106553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417568

RESUMO

Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.


Assuntos
Endometriose , Ferroptose , Sobrecarga de Ferro , Neoplasias Ovarianas , Feminino , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Endometriose/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Ovarianas/metabolismo , Sobrecarga de Ferro/metabolismo , Células Estromais/metabolismo , Ferro/metabolismo , Microambiente Tumoral
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396628

RESUMO

CD8+ T cells play a role in the suppression of tumor growth and immunotherapy. Ion channels control the Ca2+-dependent function of CD8+ lymphocytes such as cytokine/granzyme production and tumor killing. Kv1.3 and KCa3.1 K+ channels stabilize the negative membrane potential of T cells to maintain Ca2+ influx through CRAC channels. We assessed the expression of Kv1.3, KCa3.1 and CRAC in CD8+ cells from ovarian cancer (OC) patients (n = 7). We found that the expression level of Kv1.3 was higher in patients with malignant tumors than in control or benign tumor groups while the KCa3.1 activity was lower in the malignant tumor group as compared to the others. We demonstrated that the Ca2+ response in malignant tumor patients is higher compared to control groups. We propose that altered Kv1.3 and KCa3.1 expression in CD8+ cells in OC could be a reporter and may serve as a biomarker in diagnostics and that increased Ca2+ response through CRAC may contribute to the impaired CD8+ function.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Ovarianas , Humanos , Feminino , Linfócitos T CD8-Positivos/metabolismo , Canais de Potássio/metabolismo , Prognóstico , Biomarcadores/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Canal de Potássio Kv1.3/metabolismo
20.
Biochem Pharmacol ; 221: 116040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311257

RESUMO

Paclitaxel is widely used to treat cancer, however, drug resistance limits its clinical utility. STAT3 is constitutively activated in some cancers, and contributes to chemotherapy resistance. Currently, several STAT3 inhibitors including WP1066 are used in cancer clinical trials. However, whether WP1066 reverses paclitaxel resistance and the mechanismremains unknown. Here, we report that in contrast to paclitaxel-sensitive parental cells, the expressions of several pro-survival BCL2 family members such as BCL-2, BCL-XL and MCL-1 are higher in paclitaxel-resistant ovarian cancer cells. Meanwhile, STAT3 is constitutively activated while stathmin loses its activity in paclitaxel-resistant cells. Importantly, WP1066 amplifies the inhibition of cell proliferation, colony-forming ability and apoptosis of ovarian cancer cells induced by paclitaxel. Mechanistically, WP1066, on the one hand, interferes the STAT3/Stathmin interaction, causing unleash of STAT3/Stathmin from microtubule, thus destroying microtubule stability. This process results in reduction of Ac-α-tubulin, further causing MCL-1 reduction. On the other hand, WP1066 inhibits phosphorylation of STAT3 by JAK2, and blocks its nuclear translocation, therefore repressing the transcription of pro-survival targets such as BCL-2, BCL-XL and MCL-1. Finally, the two pathways jointly promote cell death. Our findings reveal a new mechanism wherein WP1066 reverses paclitaxel-resistance of ovarian cancer cells by dually inhibiting STAT3 activity and STAT3/Stathmin interaction, which may layfoundation for WP1066 combined with paclitaxel in treating paclitaxel-resistant ovarian cancer.


Assuntos
Neoplasias Ovarianas , Paclitaxel , Piridinas , Tirfostinas , Humanos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides , Estatmina/metabolismo , Transdução de Sinais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...